双层神经网络
模块导入
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid , load_planar_dataset
%matplotlib inline
np.random.seed(1)
X, Y = load_planar_dataset()#加载数据
数据可视化
plt.scatter(X[0, :], X[1, :], c = np.squeeze(Y), s = 40, cmap=plt.cm.Spectral)
<matplotlib.collections.PathCollection at 0x1d800b7e6a0>
数据分析
shape_X = X.shape
shape_Y = Y.shape
m = Y.shape[1]
print(shape_X)
print(shape_Y)
print(m)
(2, 400)
(1, 400)
400
神经搭建
数据结构获取
def layer_size(X, Y):
n_x = X.shape[0]
n_h = 4
n_y = Y.shape[0]
return (n_x, n_h, n_y)
参数初始化
def initialize_parametiers(n_x, n_h, n_y):
np.random.seed(2)
W1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros(shape=(n_h, 1))
W2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros(shape=(n_y, 1))
assert(W1.shape == (n_h, n_x))
assert(b1.shape == (n_h, 1))
assert(W2.shape == (n_y, n_h))
assert(b2.shape == (n_y, 1))
parameters = {
"W1" : W1,
"b1" : b1,
"W2" : W2,
"b2" : b2
}
return parameters
向前传播
def forward_propagation(X, parameters):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
Z1 = np.dot(W1, X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = sigmoid(Z2)
assert(A2.shape == (1, X.shape[1]))
cache = {
"Z1" : Z1,
"A1" : A1,
"Z2" : Z2,
"A2" : A2
}
return (A2, cache)
计算成本函数
def compute_cost(A2, Y, parameters):
m = Y.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
logprobs = np.multiply(np.log(A2), Y) + np.multiply( np.log(1 - A2), (1 - Y))
cost = -np.sum(logprobs) / m
cost = float(np.squeeze(cost))
assert(isinstance(cost, float))
return cost
反向传播
def backward_propagation(parameters, chche, X, Y):
m = X.shape[1]
W1 = parameters["W1"]
W2 = parameters["W2"]
A1 = chche["A1"]
A2 = chche["A2"]
dZ2 = A2 - Y
dW2 = (1 / m) * np.dot(dZ2, A1.T)
db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)
dZ1 = np.multiply(np.dot(W2.T, dZ2), 1 - np.power(A1, 2))
dW1 = (1 / m) * np.dot(dZ1, X.T)
db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)
grads = {
"dW1" : dW1,
"db1" : db1,
"dW2" : dW2,
"db2" : db2
}
return grads
更新参数
def update_parameters(parameters, grads, learning_rate=1.2):
W1, W2 = parameters["W1"], parameters["W2"]
b1, b2 = parameters["b1"], parameters["b2"]
dW1, dW2 = grads["dW1"], grads["dW2"]
db1, db2 = grads["db1"], grads["db2"]
W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
parameters = {
"W1" : W1,
"b1" : b1,
"W2" : W2,
"b2" : b2
}
return parameters
整合
def nn_model(X, Y, n_h, num_iterations, learning_rate=0.5, print_cost=False):
np.random.seed(3)
n_x, n_y = layer_size(X, Y)[0], layer_size(X, Y)[2]
parameters = initialize_parametiers(n_x, n_h, n_y)
W1, b1 = parameters["W1"], parameters["b1"]
W2, b2 = parameters["W2"], parameters["b2"]
for i in range(num_iterations):
A2, cache = forward_propagation(X, parameters)
cost = compute_cost(A2, Y, parameters)
grads = backward_propagation(parameters, cache, X, Y)
parameters = update_parameters(parameters, grads, learning_rate)
if print_cost:
if i % 1000 == 0:
print("第%d次循环, 成本为:%s" % (i, str(cost)))
return parameters
构建预测
def predict(parameters, X):
A2, cache = forward_propagation(X, parameters)
predictions = np.round(A2)
return predictions
模型预测
parameters = nn_model(X, Y, n_h = 4, num_iterations=10000, print_cost=True)
#plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plot_decision_boundary(lambda x: predict(parameters, x.T), X, np.squeeze(Y))
plt.title("Decison Boundary for hidden layer size" + str(4))
predictions = predict(parameters, X)
print ('准确率: %d' % float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')
第0次循环, 成本为:0.6930480201239823
第1000次循环, 成本为:0.3098018601352803
第2000次循环, 成本为:0.2924326333792646
第3000次循环, 成本为:0.2833492852647412
第4000次循环, 成本为:0.27678077562979253
第5000次循环, 成本为:0.26347155088593144
第6000次循环, 成本为:0.24204413129940763
第7000次循环, 成本为:0.23552486626608762
第8000次循环, 成本为:0.23140964509854278
第9000次循环, 成本为:0.22846408048352365
准确率: 90%
plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 20, 50] #隐藏层数量
for i, n_h in enumerate(hidden_layer_sizes):
plt.subplot(5, 2, i + 1)
plt.title('Hidden Layer of size %d' % n_h)
parameters = nn_model(X, Y, n_h, num_iterations=5000)
plot_decision_boundary(lambda x: predict(parameters, x.T), X, np.squeeze(Y))
predictions = predict(parameters, X)
accuracy = float((np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100)
print ("隐藏层的节点数量: {} ,准确率: {} %".format(n_h, accuracy))
隐藏层的节点数量: 1 ,准确率: 67.25 %
隐藏层的节点数量: 2 ,准确率: 66.5 %
隐藏层的节点数量: 3 ,准确率: 89.25 %
隐藏层的节点数量: 4 ,准确率: 90.0 %
隐藏层的节点数量: 5 ,准确率: 89.75 %
隐藏层的节点数量: 20 ,准确率: 90.0 %
隐藏层的节点数量: 50 ,准确率: 89.75 %
planar_utils.py文件源码解析
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
def plot_decision_boundary(model, X, y):
# Set min and max values and give it some padding
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole grid
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
def sigmoid(x):
s = 1/(1+np.exp(-x))
return s
def load_planar_dataset():
np.random.seed(1)
m = 400 # number of examples
N = int(m/2) # number of points per class
D = 2 # dimensionality
X = np.zeros((m,D)) # data matrix where each row is a single example
Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
a = 4 # maximum ray of the flower
for j in range(2):
ix = range(N*j,N*(j+1))
t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
def load_extra_datasets():
N = 200
noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure