深层神经网络

第四周作业

知识回顾

步骤

  1. 初始化网络参数

  2. 前向传播
    2.1 计算一层的中线性求和的部分

    2.2 计算激活函数的部分(ReLU使用L-1次,Sigmod使用1次)

    2.3 结合线性求和与激活函数

  3. 计算误差

  4. 反向传播

    4.1 线性部分的反向传播公式

    4.2 激活函数部分的反向传播公式

    4.3 结合线性部分与激活函数的反向传播公式

  5. 更新参数

总结

Alt

代码

import numpy as np  
import matplotlib.pyplot as plt  

np.random.seed(1) #随机种子  

# sigmoid 函数  
def sigmoid(Z):  
    A = 1 / (1 + np.exp(-Z))  
    cache = Z  
    return A, cache  

# 反向sigmoid函数求导  
def sigmoid_backward(dA, cache):  
    Z = cache  
    s = 1 / (1 + np.exp(-Z))  
    dZ = dA * s * (1 - s)  
    assert(dZ.shape == Z.shape)  

    return dZ  


# relu函数  
def relu(Z):  
    A = np.maximum(0, Z)  
    assert(A.shape == Z.shape)  
    cache = Z  
    return A, cache  


# 反向 relu 函数求导  
def relu_backward(dA, cache):  
    Z = cache  
    dZ = np.array(dA, copy=True)  
    dZ[Z<=0] = 0  
    assert(dZ.shape == Z.shape)  

    return dZ  

# 两层神经网络  
def initialize_parameters(n_x, n_h, n_y):  
    W1 = np.random.randn(n_h, n_x)  
    b1 = np.random.randn(n_h, 1)  
    W2 = np.random.randn(n_y, n_h)  
    b2 = np.random.randn(n_y, 1)  

    assert(W1.shape == (n_h, n_x))  
    assert(b1.shape == (n_h, 1))  
    assert(W2.shape == (n_y, n_h))  
    assert(b2.shape == (n_y, 1))  

    parameters = {  
        "W1" : W1,  
        "b1" : b1,  
        "W2" : W2,  
        "b2" : b2  
    }  

    return parameters  


# 多层神经网络参数初始化  
def initialize_parameters_deep(layers_dims):  
    np.random.seed(3)  
    parameters = {}  
    L = len(layers_dims)  
    for l in range(1, L):  
        parameters["W" + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1])  
        parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))  

        assert(parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1]))  
        assert(parameters["b" + str(l)].shape == (layers_dims[l], 1))  

    return parameters  


# 前行传播  
def linear_forward(A, W, b):  
    Z = np.dot(W, A) + b  
    assert(Z.shape == (W.shape[0], A.shape[1]))  
    cache = (A, W, b)  

    return Z, cache  


# 线性激活  
def linear_activation_forward(A_prev, W, b, activation):  
    if activation == "sigmoid":  
        Z, linear_cache = linear_forward(A_prev, W,b)  
        A, activation_cache = sigmoid(Z)  
    elif activation == "relu":  
        Z, linear_cache = linear_forward(A_prev, W, b)  
        A, activation_cache = relu(Z)  

    assert(A.shape == (W.shape[0],A_prev.shape[1]))  
    cache = (linear_cache, activation_cache)  
    # print(relu(Z))  
    return A,cache  

# 多层前行传播  
def L_model_forward(X, parameters):  
    caches = []  
    A = X  
    L = len(parameters) // 2  
    for l in range(1, L):  
        A_prev = A  
        A, cache =  linear_activation_forward(                                              A_prev, parameters["W"+str(l)],                                             parameters['b'+str(l)],'relu')  
        caches.append(cache)  
    AL, cache = linear_activation_forward(A, parameters["W"+str(L)],                                         parameters['b'+str(L)],'sigmoid')  
    caches.append(cache)  
    assert(AL.shape == (1, X.shape[1]))  

    return AL, caches  


# 计算成本  
def compute_cost(AL, Y):  
    m = Y.shape[1]  
    cost = -np.sum(np.multiply(np.log(AL), Y) + np.multiply(np.log(1 - AL), 1 - Y)) / m  

    cost = np.squeeze(cost)  
    assert(cost.shape == ())  

    return cost  


# 后向传播线性部分  
def linear_backward(dZ, cache):  
    A_prev, W, b = cache  
    m = A_prev.shape[1]  
    dW = np.dot(dZ, A_prev.T) / m  
    db = np.sum(dZ, axis=1, keepdims=True) / m  
    dA_prev = np.dot(W.T, dZ)  

    assert(dA_prev.shape == A_prev.shape)  
    assert(dW.shape == W.shape)  
    assert(db.shape == b.shape)  

    return dA_prev, dW, db  


# 向后传播激活  
def linear_activation_backward(dA, cache, activation="relu"):  
    linear_cache, activation_cache = cache  
    if activation == "relu":  
        dZ = relu_backward(dA, activation_cache)  
        dA_prev, dW, db = linear_backward(dZ, linear_cache)  
    elif activation == "sigmoid":  
        dZ = sigmoid_backward(dA, activation_cache)  
        dA_prev, dW, db = linear_backward(dZ, linear_cache)  

    return dA_prev, dW, db  


# 多层向后传播函数  
def L_model_backward(AL, Y, caches):  
    grads = {}  
    L = len(caches)  
    m = AL.shape[1]  
    Y = Y.reshape(AL.shape)  
    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))  

    current_cache = caches[L-1]  
    grads["dA" + str(L)], grads["dW"+str(L)], grads["db"+str(L)] =     linear_activation_backward(dAL, current_cache, "sigmoid")  

    for l in reversed(range(L-1)):  
        current_cache = caches[l]  
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA"+str(l+2)],                                                                   current_cache, "relu")  
        grads["dA"+str(l + 1)] = dA_prev_temp  
        grads["dW"+str(l + 1)] = dW_temp  
        grads["db"+str(l + 1)] = db_temp  

    return grads  


def update_parameters(parameters, grads, learning_rate):  
    L = len(parameters) // 2  
    for l in range(L):  
        parameters["W" + str(l + 1)] = parameters["W"+str(l+1)] - learning_rate*grads["dW"+str(l+1)]  
        parameters["b" + str(l + 1)] = parameters["b"+str(l+1)] - learning_rate*grads["db"+str(l+1)]  
    return parameters      


# 搭建多层神经网络  
def L_layer_model(X, Y, layerdims, learning_rate=0.0075, num_iterations=3000, print_cost=False,isPlot=True):  
    np.random.seed(1)  
    costs = []  
    parameters = initialize_parameters_deep(layerdims)  
    for i in range(0,num_iterations):  
        AL, caches = L_model_forward(X, parameters)  
        cost = compute_cost(AL, Y)  
        grads = L_model_backward(AL, Y, caches)  
        parameters = update_parameters(parameters, grads, learning_rate)  

        if i % 100 == 0:  
            costs.append(cost)  
            if print_cost:  
                print("第", i, "次迭代,成本值为: ", np.squeeze(cost))  
    if isPlot:  
        plt.plot(np.squeeze(costs))  
        plt.ylabel('cost')  
        plt.xlabel('iterations (per tens)')  
        plt.title("Learning rate =" + str(learning_rate))  
        plt.show()  

    return parameters  


def predict(X, y, parameters):  
    m = X.shape[1]  
    n = len(parameters) // 2   
    p = np.zeros((1,m))  

    probas, caches = L_model_forward(X, parameters)  

    for i in range(0, probas.shape[1]):  
        if probas[0,i] > 0.5:  
            p[0,i] = 1  
        else:  
            p[0,i] = 0  

    print("准确度为: "  + str(float(np.sum((p == y))/m)))  

    return p  

   转载规则


《深层神经网络》 ZS 采用 知识共享署名 4.0 国际许可协议 进行许可。
 上一篇
1.2偏差与方差 1.2偏差与方差
1.2 偏差与方差二者在深度学习上的现状 一般将二者分开考虑,并不考虑二者的权衡 偏差 偏差高,欠拟合 描述的是训练集的测试结果和事实标签之间的差距 方差 方差高,过拟合 描述的是训练集与验证集之间的准确性的差距
2019-04-09
下一篇 
螺旋序列的输出 螺旋序列的输出
我的算法日常 — 螺旋数字串描述 输入n输入行列n个数字的矩阵 形如 10 11 12 1 9 16 13 2 8 15 14 3 7 6 5 4 螺旋递增序列 思路 螺旋递增也就是,下–左–上
2019-04-03
  目录